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Why??

+ Renewables to be 2/3rds of capacity additions to 2040
« Asinstalled capacity increases, greater flexibility is needed
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“The main methods for generating
hydrogen

« Steam Methane Reformation (SMR): Using steam to split methane
into H, and CO,. The CO, is generally sequestered as part of this
process. This is referred fo as blue hydrogen.

 Gasification of solid fuels like coal, pet coke, biomass, municipal
waste into a syngas. This has which contains CO, CO,, and other
things is then processed to recover H,. This is referred to as
brown hydrogen

. Ele_ctrola/sis: Using electricity (often using excess renewables) to
split H,0 into hydrogen and oxygen. This is referred to as green

hydrogen

* Photolytic: Using light energy to split water into hydrogen and
oxygen. This is also considered to be green hydrogen.
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Note: H, price at the boundary of the production facility. Large SMR plant scale : 100,000 Nm3/h H, output, large SMR Capacity factor = 95%. Small SMR plant scale = 2,000 Nm3/h H, output (equivalent to
a 10 Mwe input Electrolyser at full capacity), small SMR Capacity factor = 95%. Alkaline Electrolyser capacity = 100 MWe input (H, output 20,000 Nm3/h at full capacity). PEM Electrolyser capacity = 10
MWe input (H, output 2,000 Nm3/h at full capacity). Natural gas price: 16 Euros/MWh. Carbon price of 21 Euros per metric ton. Wholesale grid electricity: 95% capacity factor (CF) at 44.9 Euros/MWh with
20 Euros/MWh grid fees (10 Euros/MWh grid fees for France). Utility scale solar PV: 14% CF at LCOE 55.1 Euros/MWh. Onshore Wind = 25% CF at LCOE 45.7 Euros/MWh. Offshore Wind = 54% CF at
LCOE 66 Euros/MWh. For France, assumes only reduction in grid fees with same wholesale electricity price. CO2 transport mode: 500 km offshore pipeline with injection and storage in a depleted oil and
gas field. Ermror bars reflect the uncertainly and variability in capex for SMR and carbon capture and storage. Average cost of CCS: 72 euros per tonne of CO2. Solar PV in Spain: LCOE = 45.9 euros per
MWh, capacity factor = 18%. Onshore wind in Spain: LCOE = 34.5 euros per MWh, capacity factor = 28%. Offshore wind in Spain: LCOE = 75.9 euros per MWh, capacity factor = 38%.

© 2019 IHS Markit
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Open Questions

* What is the impact of hydrogen in natural
gas on gas turbine combustion and
safety?

* What is the impact of Hydrogen on
transportation efficiency in a pipeline?
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Open Questions

* What is the impact of hydrogen in natural
gas on gas turbine combustion and
safety?
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Gas Turbine Combustion
Systems
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Hydrogen Blend Combustion
Characteristics

H2 Blend 0% 5% 10% 20% 30% 100%
Combustion Parameters
Laminar Flame Speed (cm/s) 124 127 130 139 150 749
Autoignition Delay Time (msec) 124 112 107 104 103 76
Wobbe Index (btu/scf) 1215 1199 1183 1150 1116 1039
Flame Temperature (°F)! 4206 4210 4215 4225 4238 4510
Package & Fuel System
Flammability (% vol LEL) 4.83 4.79 4.71 4.63 4
Maximum Experimental Spark Gap (MESG) 1.10 1.06 1.02 .94 .86 .28
NEC/CSA & IEC Gas Groups R WIIN D &IIA D &IIA D &IIA D &l1IB B&IIC
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Emissions (Diffusion Flame)

Pipeline Natural Gas f
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Hydrogen + Natural Gas |
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Package Issues
« Safety
* Purge
* Failed Starts

H, Flammability range: 4%-75% by volume (Natural Gas: 5-15%)
H, Autoignition Temperature 500°C (Nat Gas : 580°C)
H, Ignition Energy: 0.02mJ (Nat Gas: 0.29mJ)
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Flame Speed
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Varying Levels of Propane, Butane and CO2 Mixed with Natural Gas
Compared to Mixtures of Hydrogen and Natural Gas
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Lean Premix-NQO, Emissions
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Lean Premix-NQO, Emissions
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NOx Emissions Variation at Combustion Rig Testing at Simulated Full Load
Conditions for a 59°F Day and Constant Pilot Level with Varying Blends of
Hydrogen Mixed with Natural Gas.
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Combustion Summary

» Conventional combustion systems are
proven for H, + NG blends up to 30%.

* Even for Lean Premix systems, H,+ NG
mixtures of 5 to 10% are not problem
today.

» Concerns are related to safety, for
example at failed starts. These are
manageable with todays technology
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Open Questions

* What is the impact of Hydrogen on
transportation efficiency in a pipeline?
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Hydrogen Properties Tl
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* |t's lighter

Volume Calorific value, GCV, kWh/m3(n) ==== Normal mass density, r0, kg/m3(n)

n
. I Owe r VO | u m et rI C Heat Capacity at Constant Pressure Cp kl / (K.kg)
16,00

14,00

heating value .

6,00

* Higher Heat -
capacity

* Different Viscosity u

0% 20% 405 60% BO% 100%

H2 concentration

@ 15°C & 40 bara

@ Nomal Condition, 0°C and 1 atm

10-6 Pa.s

0% 20% 40% 60% 80% 100%

H2 concentration

@ Nomal Condition, 0°C and 1 atm — - = @ 15°C & 40 bara
@ 15°C & 80 bara @ 55°C & 80 bara




GTEN 2019 Symposium

Q /
\«/%’bi e
7185 fo

Impact on Compression ., yaroger

* Operating
points for
constant inlet
conditions and
discharge
pressure.

* Flow adjusted
to maintain
energy flow

L
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Pipeline Simulation

Flow rate to respect
P upstream = 85 bara - P downstream = 51 bara - Length =
250 km - Diameter 900
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Transport Efficiency

» Gas compressors are able to handle
hydrogen in natural gas, but the will have
to run faster (ie, re-stages may be
required on existing units), and will
consume more power.

* The transportation efficiency of pipelines
will be reduced when hydrogen is added.
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Summary

|t can be done
* Viable to Balance Renewables
« Economic Justification?

* What are realistic concentrations (based
on production capability)
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